موارد المياه في السودان واستخداماتها البشرية
تأليف الدكتور / حجج الترماني
مدرس بقسم الجغرافيا
كلية الآداب - جامعة القاهرة
أبريل 1992
موارد المياه في السودان واستخداماتها البشرية

مقدمة:

تعتبر المياه أحد أهم الموارد الطبيعية للشعوب، وتزداد أهميتها في الدول التي تتبناها مصادر المياه على مدار السنة. ولا كانت السودان من أكبر الدول العربية في المصادرين المائية، وتتميز بتعدد مصادرها سواء الأنهار أو المياه الجوفية أو الأنهار والأودية والأنهار الموسمية الجريان، لذا كانت جذبيرة بالدراسة.

وتعتبر السودان دولة مملكة الأنهار الدولية مشابهًا في نهر النيل الذي ينبع من هضبة الحبشة وضواحي البحيرات، وبعض منابعه جنوب غرب السودان، ولذا كانت أهمية الاتفاقات الدولية بين دول حوض النيل عامة وبين كل من مصر والسودان خاصة.

كما تعتبر السودان دولة مصبة لبعض الأنهار والأوامر القادمة من غرب وشمال غرب هضبة الحبشة، بالإضافة إلى ذلك تعتبر منبعاً أو مصدراً لأجزاء كبيرة من المياه الجوفية في الصحراء الغربية في مصر.

هذا وتعتبر جغرافية المياه المعذبة الآن موضعًا لاهتمام الباحثين، خاصة وأن المياه أصبحت عنصرًا استراتيجيًا للدول، ويحاول الباحث في هذه الدراسة التركيز على الامكانيات المحتقة من المياه في السودان، واستخداماتها المختلفة، وامكانيتها تسيمها، والخروج ببعض النتائج.
مصادر المياه في السودان

تتمثل المياه في السودان في عدة مصادر: الأمطار، مياه نهر النيل وروافده، المجرات المائية الأخرى، وخزانات المياه الجوفية.

أولاً - الأمطار:

تعد السودان ضمن الدول العربية التي تحتل أمطاراً في فصل الصيف، والذي يسقط بها 0.9% من جملة الأمطار بين شهري يوليو وسبتمبر، وتلقى الكمية تسقط في شهري يوليو وأغسطس (339). وهي من الدول العربية الميزة في مصادر المياه من الأمطار، ويسعى لها مواقعها الفلكية وامتداد مساحتها بالتنوع والتقالب في كميات الأمطار، حيث ساعد موضعها بين 4 و27 شمالاً على ظهور الأمطار الاستوائية بها، ومناطق أخرى شبه استوائية، نطاق ثلاث ينبع المناخ السوداني الذي يعبر بفصلية في سقوط الأمطار، وظهور النظام الصحرائي بها أيضاً، واختلاف إقليم ساحل البحر الأحمر اختلافاً طيفياً عن المناطق الداخلية على نفس خط العرض. وخير مثال على ذلك امتداد خطوط المطر التصاري من الغرب إلى الشرق عامة، وانخفاض قيمتها بالاتجاه نحو الشمال.

وتؤثر التضاريس على التساقط حيث تزيد في نبرتيمتي في جبال النوبو إلى 38 سم، بينما في النهر في وسط السودان، وعلي نفس خط العرض تقريباً بقلل معدل الأمطار إلى 24 سم. كما في جدول (1) . أما جبل البحر الأحمر يزيد ارتفاعها من الأمطار بقارتها بالمجالات الداخلية الواقعة على نفس خط العرض، فالامطار في كريات في الداخل 5.1 سم، وفي السنة، بينما في هايا على الساحل 7.8 سم.

هنا يمكن تقييم نظارات المطر في السودان، فالإقليم الاستوائي يبلغ هنا 7 محطات مناخية، يبلغ معدل الأمطار به 27.5 سم/السنة، ويتصل معامل الفيض في هذا الإقليم 2/7. أما الإقليم شبه الاستوائي (85) ويتكله 7 محطات أيضاً، ويتصل الإقليم مناخياً بها وعمدة الأمطار به 5.6 سم/السنة، وعمدة الفيض به 10.2/7.

جدول (1): يليه الإقليم الثالث وهو الإقليم السوداني (8.5 ش) ويتكله 37 محطة.

-186-
جدول (1)
النظم المناخية في السودان
و علاقتها بسقوط الأمطار
والبيان المائي لها

<table>
<thead>
<tr>
<th>النظام المناخي</th>
<th>متوسط الكمية الممطرة (السالب) سم</th>
<th>معدل الأمطار</th>
<th>خطوط العرض المحيطة (الموقع)</th>
<th>عدد المحطات</th>
</tr>
</thead>
<tbody>
<tr>
<td>الاستوائي</td>
<td>10.2 + 13.98</td>
<td>177.3</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>شبه الاستوائي</td>
<td>10.3 + 10.95</td>
<td>10.0</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>السوداني</td>
<td>23.1</td>
<td>14</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>انتقال (شبه)</td>
<td>18.1 - 21.86</td>
<td>19.4</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>صحرائى (شبه)</td>
<td>47.8 - 23.9</td>
<td>4.6</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>صحرائى</td>
<td>77.0 - 21.6</td>
<td>7.9</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>المجموع</td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
</tbody>
</table>

* حسب البيانات من: FAO, Agroclimatology, 1984
* بعد حساب فارق القيم الشهرية للتساقط والتبر والرطوبة النسبية.
معدل الأمطار بـ 0.5 سم/ السنة، ومعامل الفائض 2.24%، ويقع الإقليم الانتقالي إلى الشمال منه وهو الإقليم الرابع، وهو الإقليم شبه الصحراوي، يمثله 8 محطات، ومعدل الأمطار هناك 4.4 سم/السنة، ثم الإقليم الصحراوي إلى الشمال منه يمثله 6 محطات، ومتوسط أمطاره 4 سم، أما إقليم ساحل البحر الأحمر فيزيد معدل أمطاره إلى 8.9 سم/السنة ويمثله 3 محطات، ويلاحظ أن الإقليم الثلاثة الأخيرة تغلى عجزا مانيا.

الفائض والعجز في الأمطار:

لم كانت معظم الأراضي السودانية تقع في النطاق الاستوائي والسوداني الذين يعمران بارتفاع الحرارة من جهة، وهو النباتات الطبيعية من نوع الغابات الاستوائية من جهة أخرى، فإن هذا يفقد جزءا كبيرا من المياه الساقطة، علاوة على قلة التساقط في النطاق الصحراوي، ولذا تتفاوت النطاقات في مقدار ما يسبقه من مياه الأمطار، والتي تحدث جريانًا سطحياً والتي تلبى حاجة السكان بالبلاد.

فأكثر المناطق في الفائض المائي المثلى للجريان السطحي تتمثل في الجنوب الغربي، ويصل الفيض 25 سم، وقد يزيد عن ذلك في بعض المحطات، والإقليم شبه الاستوائي قد يقل الفيض المائي إلى الصفر أو أقل قليلاً، وإن كانت يتراوح كمية مياهه في الركن الجنوبي الغربي بين صفر و 25 سم، كما في المكان (11)، حيث يصل متوسط الكمية المثلى للجريان في الإقليم الاستوائي 12.98 سم، وفق الكمية في النطاق شبه الاستوائي إلى 10.10 سم في المتوسط، في حين يزيد الفيض نسبياً في الإقليم السوداني حيث يصل المتوسط إلى 14 سم، وإن كانت معظم هذه المناطق التي يحدث بها جريان سطحي تتركز في جبال النوبة، حيث يقل الفيض نسبياً بالتبع، وقلة الغطاء النباتي عن النطاق الاستوائي من جهة أخرى.

ويسمى العجز المائي في الإقليم شبه الصحراوي حيث يسجل الفيض فيه قيمة سالبة مقدارها 218.6 سم، ويزداد بدرجة واضحة في الإقليم الصحراوي ليصل العجز إلى 243.9 سم، كما أن العجز المائي في الإقليم الساحلي في الإقليم البحر الأحمر يصل إلى 716.5 سم.

وطبقاً لمؤشرات الرطوبة لثورنزويت Thornthwite نجد أنها قيم سالبة في معظم
أجزاء الدولة، في الأجزاء الشمالية تبلغ قيمة المؤشر 6، ومعظم الأجزاء الوسطى تتراوح قيمة المؤشر بين 100 - 400، وفي شمال خط عرض 12 شماليًا تتراوح القيمة بين 200 - 400، أما في الجنوب فيسجل المؤشر قيمة موجبة تدور حول 2000. (The Democratic Republic of Sudan, 1977, P.4)

تذبذب الأمطار:

تتساقط الأمطار في السودان بعدم الانتظام في التساقط، ويتم تحليل قيم التساقط للفترة من 1938 إلى 1987، وجد أن معدل التغيير في الأقاليم الاستوائية يبلغ جويا وصل إلى 4941 سنتيمتر، أي أن كمية الأمطار أخذة في النقصان بعد سنين يدو بالحول 4.9

ملليمتر، وفي الأقاليم شبه الاستوائية يزيد المعدل إلى 2000 من المليمترات أي تكاد تنقسم بالكامل في النسب، وفي الأقاليم شبه الصحراوي يبلغ معدل التغيير - 9.9 مليمتر وان كان يزيد في وادي حلفا إلى 8.8 مليمتر خلال 40 سنة، هذا وصل في الأقاليم الساحلي 4.4

ملليمترات**.

ويلاحظ أن التناوبات في التساقط يزداد كلما اقتربنا جنوبا، وقد وجد أن الفارق بين

أدنى وأعلى قيمة تساقط كبيرة وصل الاختلاف إلى النصف تقريبًا، ويزداد هذا الفارق في الأقاليم السوداني (الفاشر)، حيث أن أقل قيمة سجلت تصل إلى (14) بأنه نسبة

لأعلى قيمة تساقط، فأدنى قيمة سجلت كانت 3.7 سنتيمتر، بينما أدنى قيمة وصلت إلى

718 سنتيمتر، وفي الخرطوم التي تغطي الأقاليم الانتقالي (شبه الصحراوي) أدنى أقل قيمة

4703 سنتيمتر، وتبلغ (100/1) بالنسبة لأعلى قيمة تبلغ 6105 سنتيمتر، أما الأعلى

الساحلي فأدنى قيمة تبلغ (9119 سنتيمتر) وتمثل (1/1) بالنسبة لأعلى قيمة سجلت.

من هنا يظهر لنا أن الفترة البالغة نصف قرن وصل عدد الفترات الطفيرة أو القمم المطرية، والفترات التي ساد فيها الجفاف تختلف من أقاليم لأخرى، فعدد القمم في الأقاليم

الاستوائي 5، وفي الأقاليم السوداني 4 قمم، وفي الأقاليم الانتقالي شبه الصحراوي 7 قمم

في كسلا، 9 قمم في محطة الخرطوم كما في جدول (2).

* من حساب الباحث للقيم في الفترة من 1938 – 1988

** ذكر من المصدر الأصلي.
جدول (2)
تتابع فترات المطر والجفاف
بالنطاقات المناخية بالسودان

<table>
<thead>
<tr>
<th>النظام المناخي</th>
<th>الاستوائي السودانى</th>
<th>انتقالي شبه الصحراء</th>
<th>انتقالي شبه الصحراء</th>
<th>الصحراوى الساحلية</th>
</tr>
</thead>
<tbody>
<tr>
<td>المطر</td>
<td>غويلا</td>
<td>نادى حلفا</td>
<td>نادى حلفا</td>
<td>نادى حلفا</td>
</tr>
<tr>
<td></td>
<td>جويا</td>
<td>الفاخر</td>
<td>القطرى</td>
<td>سابقا</td>
</tr>
<tr>
<td></td>
<td>1948</td>
<td>1939</td>
<td>1969</td>
<td>1985</td>
</tr>
</tbody>
</table>

* المصدر: من عمل الباحث استخراجاً من قيم تفتيش عام ضبط النيل بالقاهرة، بيانات غير منشورة.

ويلاحظ أنه قد يكون هناك توافقاً نسبياً في مواصفات قمم الأمطار في بعض النطاقات كما في أعوام 1943 - 1945، ولكنها تختلف في الفترات الأخرى.

هذا ويلاحظ أن أطول فترات جافة ظهر أثرها هي التي حدثت في العشرين سنة الأخيرة، وبلغ طولها في النظام السوداني 17 سنة كما في الفاشر، 13 سنة في النظام الاستوائي، 24 سنة في كسلا، وفي الاقليم الساحلي الواقع على البحر الأحمر 13 سنة في البداية ثم 9 سنوات أخرى.

2. المياه السطحية:

في دراستنا للمياه السطحية بالسودان نجد أن نتعرف على الميزان المائي بها، وتشمل المياه السطحية الكمية المتبقية من سقوط الأمطار بعد التبخير والتسرب في بطن الأرض، وحصول الرياب على كفايتها من المياه قدر المستطاع، وتتبعد هذه المياه على الميل العام للأرض، ولها كانت كمية الأمطار الساقطة على السودان تقدر بحوالي 1.2 مليار
1.3 مليارات م³ محكم ارتفاع درجة الحرارة. أما الكمية التي تتحول إلى مياه جوفية فتبلغ 1.1 مليارات م³ من جملة الأمطار المتساقطة على السودان كما في جدول (3) B خلاف مصادر المياه الأخرى التي تغذي المياه الجوفية، أما الكمية التي تجري على السطح بها فتبلغ 47.9 مليار م³. لذلك يمكن أن تقدر كمية المياه التي تنفد عن طريق النتج بحوالي 2 مليار م³. لذلك قد أن كمية المياه السطحية لا تقدر بقليل عن 2.5% تقريبا من كميات الأمطار المتساقطة على السودان بسبب شدة التبخر وقوة عمليات البخر. Evapotranspiration نتجت خاصة في النصف الجنوبي للسودان.

جدول (1)

الميزان المائي للموارد المائية بالسودان بالليارات

<table>
<thead>
<tr>
<th>استهلاك النبات</th>
<th>الإجمالي</th>
<th>كمية الجريان</th>
<th>كمية التبخر</th>
<th>كمية التساقط</th>
<th>جملة التساقط</th>
</tr>
</thead>
<tbody>
<tr>
<td>النهر بحر - نيجير</td>
<td>1.88</td>
<td>47.9</td>
<td>20.1</td>
<td>165</td>
<td>169</td>
</tr>
</tbody>
</table>

وتتقلس الموارد المائية السطحية في السودان إلى نوعين طبقا للمصدر: مياه نهر النيل كنظام دولي يشترك فيه عدة دول، والموارد المائية للأودية والأنهار الأخرى.

1. الموارد المائية النيلية في السودان:

- ينقسم حوض النيل في السودان إلى خمسة أحواض ثانوية بها، هي:
 - حوض النيل الأبيض، يعتبر البعض أنه يبدأ من بحر الخيل.
 - حوض نهر السويس.
 - حوض نهر عظرة.
 - حوض النيل الأزرق.
 - حوض النيل الرئيسي، يبدأ من الخرطوم حتى حدود مصر فيما يعرف بالنيل النوري.

وبدخل نهر النيل في جنوب السودان، وسمي ببحر الجبل بكمية تبلغ 32 مليار م³/السنة كما في جدول (4)، وتتفاوت الكمية في القرن العشرين ما بين 58 - 59.199 مiliar م³، يصل منها إلى ملكما ما بين 10 - 20 مليار م³، ولذلك فإن نسبة الفاقد
29.199% يتوسط تصرف قدره 28 مليار م³، يصل منها إلى ملكما 16 مليار م³،
وبذلك فإن نسبة الفاقد 50% (التقرير العام عن بعثة مباحث النيل الأبيض، 1955،

ويبلغ معدل تصرف بحر الزراف 18.86 مليار م³ خلال 30 سنة عن تسعيا،
ويصل التصرف عند فمه 3.4 مليار م³، والتي تبلغ بالكمية الإجمالية عند فم السواط
إلى 14 مليارا، حيث يصل ببحر الجبل بقطاعين صناعيين (فريق أبحاث صناعي 1983،
ص ص 17، 18). ولاحظ أن جميع الأفيض مركزا البحر الزراف وبحر العرب تبلغ 16 مليار
م³ في المستحاثات ولا يغذى ببحر النيل نهر النيل إلا أباص من مليار واحد من المياه
(المراجع السابق، ص 18)، فهي لا تزيد عن 1 مليار م³، وتقدر الكمية التي تصل منه
إلى بحيرة قبل نهر نهر النيل، 3 فلسط (مصنفة الأري المصري بالسودان، 1955 -
ص ص 3، 1).

وهل لنا يضح لنا أن الفاقد اللازم في أقليم المستحاثات كبير ويبلغ 47 مليار م³،
ويقدر عمق الماء الذاق في المستحاثات خمس متر، ويكون نسبة (15:9) بالنسبة للفاقد من
الأنهار (فريق أبحاث جونقلي، 1983، ص 17).

أما نهر السواط فتكون من رافدين رئيسيين هما البارو والببور، ومصاوبة حوْضه
244 ألف كم، ويبلغ تصرف البارو عند جمبلها 13.6 مليار م³، عند حلة دوليب عند
مخرجه 7.3 مليار م³، وشل النهر ببحر الجبل والزراف والسواط يبدأ تصرف النيل
الأبيض ويصل تصرفه عند ملكما جنوبه 29.75 مليار م³، يصل منها إلى الخرطوم
39.7 مليار م³، وتبلغ نسبة الفاقد في بعض الأحيان 10%، من جملة التصرف السنوي (مصنفة
الري المصري بالسودان، 1955، ص 1) وتصب به بعض الخثيران مثل آدار، دوليب، فاريل
فتدفع ما يبقاء بالمصرف وتصرف، وهذا ويلاحظ أن كمية تصرفه عند الخرطوم تتأتي
من الصفا من السواط ومن بحر الجبل كاجمالي خلال السنة تقريباً (فريق أبحاث جونقلي،

- 194 -
الجدول (4)
خصائص تصرفات النيل
في المواقع الرئيسية بالسودان

<table>
<thead>
<tr>
<th>النهر</th>
<th>أورافد</th>
</tr>
</thead>
<tbody>
<tr>
<td>الرافد</td>
<td>التغير</td>
</tr>
<tr>
<td>الراصد</td>
<td>منسقت</td>
</tr>
<tr>
<td>بحر النيل</td>
<td>منجلا</td>
</tr>
</tbody>
</table>
1982، ص. 2)، ولاحظ أن النيل الأبيض لا يسههم سوى يقدر 16٪ من مياه النيل.
(Natural Resources, 1988، p. 34)

هذا ويلاحظ أن إجمالي التصرف عند الخرطوم يبلغ 75.64 مليار م3، يسهم النيل الأزرق بقدر 49.9 مليار م3، يسهم النيل الأبيض بقدر 26.41 مليار م3، كما أن نهر عطرة يبلغ تصرفه 13.5 مليار م3 في المتوسط خلال القرن العشرين.

ويصل متوسط التصرف لنهر النيل أمام خزان أساون منذ أواخر القرن التاسع عشر حتى الآن 96.93 مليار م3 (83 سنة) بينما إذا اقتصرنا المعدلات على القرن العشرين فإن المعدل يقترب إلى 82.8 مليار م3.

الأودية السطحية الأخرى:

توجد أودية أخرى لا تصل مياهها إلى نهر النيل وتقشر نظراً منفصلة، وتزود المناطق الريفية بالمياه، وذلك بين خطي عرض 10° - 17° شرقا، منها أودية مديرية البحر الأحمر (The Democratic Republic of the Sudan, 1973، p. 3) والتي تصرف 765 مليون متر مكعب سنوياً، ويشير أن خور الجماش يجري به 102.8 مليون م3/ساعة، وتردي 2600 هكتار، بينما يروي خور بركة 3200 هكتار (Ibid، p. 3).

ويتضمن منطقة جبل مرة غرب السودان من المناطق الملهمة بالأودية، وتصرف 75 مليون م3 في نطاق حضيض الجبال، وتردي 120 مليون م3 في الأودية السفلى (Ibid، p.6) بينما يصرف وادي أزريم ووادي أريبو 81 مليون م3 لكل منهما، وفي جنوب دارفور يوجد وادي كاجا ووادي بيلب ويزدهر تصرفهما 33 مليون م3/السنة.

تغيرات مياه نهر النيل:

- 1966 -
سنة 1914 إلى 41 مليار م³، هذا بينما بلغ معدل التدفق في القرن العشرين عاماً 84 مليار م³ (91، 1981، p. A. M. Ibrahim)

وقد بلغ معدل التغير السنوي ليبال بحر الجبل عند بور في فترة 22 سنة 57.6 مليون م³ سنوياً، وعند فهدة سنة 157.8 مليون م³، هذا وتمت منطقة جنوب السودان تنصيرات مياه النيل في اعلاي السودان. أما بحر الزراف فيبلغ معدل تغير المياه به عند توجج 259 مليون م³، حيث تؤثر المياه المتقدقة من بحيرة نور وتتقارب قيمتها بحري الغزال، بحر الزراف مع اختلاف الأناش، في معدلات التغير، فالمعدل في الأول عند قمة 41.0، 1.0 مليون م³، وفي الثاني 34.6، 1.0 مليون م³ كما في جدول (4).

ويبلغ معدل تغير سياج نهر السواديان عند أمينه 1.1 مليون م³ وهي قيمة موجبة حيث يتأثر بأمطار هلالية الغزالة، وعند الناتور بلغ معدل 15.4 مليون م³، ولكن يحدث تغير عند مصب السواديان حيث يبلغ معدل عند حلة دولب 14.9 مليون م³، بسبب الكمية التي ينفقها السواديان سنويا في مستنقعات مشار. شكل (1.2)، (4.2).

ومن هنا نرى النيل الأبدي الذي القرن (في الناطور) يتجد أن روافد النيل الأزرق كلها، أو النيل الرئيسي بعد اتصال نهر النيل الأزرق والأبيض، ينتر عطارة أيضا تسجل كلها قيمة سالبة لمرقية التغير في تصرفات مياه النيل، حيث يسجل معدل بـ 178.9 مليون م³ في محطة النيل في العشرين عند الناطور خلال الفترة 1987.1980.1969.1960، شكل (5.2)، (7.2).

ووبالنظر ووجود علاقة بين كمية الأمطار والتصريف، فإن الأمطار في بور يمكن مقارنتها بتصرف بحر الزراف عند توجج حيث يتجد أن أعلى قمة في الناطور الخاص بسقوط الأمطار، يرتبط بها أعلى قمة للتصريف في المحرق، والتي حدثت عام 1964، هذا ونلاحظ وجود تطابق بعض السنوات النائية في تصرفها في نهر السواديان بسنوات انخفاض كميات الأمطار في محطة الناصر، ويشير ذلك في سنوات 1943، 1942، 1972، يقابلها هبوط قيم التصرف بالنهار.
ثالثاً. المياه الجوفية:

توجد المياه الجوفية في السودان في مجموعة أحواض تفصل عن بعضها في معظم الحالات، وقد يصل بعضها بالبعض الآخر، منها: حوض نيل الصحراء، وعمق المياه به 75.5 مترًا، وتحكي المياه من الجنوب إلى الشمال بسرعة 44 1/2 متر/اليوم، ومساحة الطبقة الغامضة للمياه 100-500 متر، وعلى عمق 50-500 متر، ويتدفق 7.5 مليون م³، والمخزون السنوي 5 مليارات م³، وفقًا لـ Ministry of Housing Water, 1985. هذا في حين يُقدّر حوض الصحراء من السودان إلى ليبيا وتشاد، وتقل تقلباته السنوية بسبب الحجم الهائل للمخزون المائي والتي لا تتجاوز 30 سم/السكة، وهو يضم ما يعرف بحوض الصحراء النوبية، حيث يصل سمند الطبقة المشبعة بالآبار 1000 م، وذلك بالنسبة السنوية 20,500 مليون م³، والمخزون الدائم من المياه يبلغ 9,7 مليار م³، ولا يستهلك سوى 1,2 مليون م³. (Ibid. p. 6).

(جدول 5)

أحواض المياه الجوفية في الصحراء النوبية

في السودان (والكمية بالليون م³)

<table>
<thead>
<tr>
<th>الموارد الجوفي</th>
<th>حوض نيل الصحراء</th>
<th>حوض عطيلة</th>
<th>حوض مياه مصلى</th>
<th>حوض نيل الصحراء</th>
<th>حوض عطيلة</th>
<th>حوض مياه مصلى</th>
<th>حوض نيل الصحراء</th>
<th>حوض عطيلة</th>
<th>حوض مياه مصلى</th>
</tr>
</thead>
<tbody>
<tr>
<td>الكمية</td>
<td>3.75</td>
<td>24.9</td>
<td>18.3</td>
<td>3.75</td>
<td>24.9</td>
<td>18.3</td>
<td>3.75</td>
<td>24.9</td>
<td>18.3</td>
</tr>
<tr>
<td>المتدفقة</td>
<td>24.9</td>
<td>18.3</td>
<td>3.75</td>
<td>24.9</td>
<td>18.3</td>
<td>3.75</td>
<td>24.9</td>
<td>18.3</td>
<td>3.75</td>
</tr>
<tr>
<td>الكمية</td>
<td>13.1</td>
<td>9.7</td>
<td>7.1</td>
<td>13.1</td>
<td>9.7</td>
<td>7.1</td>
<td>13.1</td>
<td>9.7</td>
<td>7.1</td>
</tr>
<tr>
<td>المتدفقة</td>
<td>3.75</td>
<td>24.9</td>
<td>18.3</td>
<td>3.75</td>
<td>24.9</td>
<td>18.3</td>
<td>3.75</td>
<td>24.9</td>
<td>18.3</td>
</tr>
</tbody>
</table>

(The Democratic, 1977, P. 8)**

** المصدر: عن (8)
وفي الاقليم الغربي تقع حوض شرق كردفان، ويتدفق من الأبعاد حتى النيل الأبيض، ومياهه قريبة نسبياً من السطح وتبعد 175.50 مترًا، وسمك الطبقات الحاملة للمياه 0.001. يستخدم 6.5 مليون م3 منها، وتغذيه السنوية بمقدار 1.5 مليار م3، والمخزون الدائم 1.71 مليار م3. أما حوض البقارة فهي تتدفق من جنوب غرب كردفان إلى شمال شرق إقليم دارفور، وحركة المياه نحو وسط الخوض، يستهلك من مياهه 12 مليون م3، والتغذية السنوية 155 مليون م3، وهي تأتي أساساً من جبال النوبة، والكمية المتاحة به تبلغ 54.8 مليون م3. (انظر جدول 5) و (شكل 11).

أما حوض النهر فيقع في وسط إقليم كردفان، والمخزون الدائم به 136 مليون م3، وتصرفه السنوي 15.64 مليون م3، ويستهلك 10.5 مليون م3 سنوياً، وحركة المياه من الغرب إلى الشرق، والبحر الغربي جزء من حوض البحر والمياه مساحتها 30 مليون كم2. ويستفاد من بحر العرب إلى جوباً ثم شمالاً بشرق حتى الرток ويضمن جزء من كرنان (تالودي) ويلاحظ أن مستوي المياه هنا من 10 إلى 25 مترًا، والمخزون الدائم يبلغ 11.8 مليار م3، وتصرفه 24.6 مليون م3 سنوياً ويستهلك 16.8 مليون م3 فقط، وسمك الطبقه المائية يبلغ 3.01 متر - (Ministry of Housing Water, 1985, pp. 6-8) . هذالإضافة إلى الأحواض التي يطلق عليها: الأحواض الفيضية، وهي أحواض محلية، حيث تنقل الأدوية والألوان المياه التي، وعمقاً لا يزيد عن 50 مترًا (Ibid., p. 9) (انظر شكل 11).

تغذية المياه الجوفية:

تختلف الأحواض المائية الجوفية في مصادر تغذيتها، فالباحيت الحبيبية السابعة تغذيها العربية، والبحار النيلية تغذي من مياه الفيضان، ومن مياه الأمطار، وفائض مياه النيل أيضاً، لذا يرتقي مستوى المياه بالخرير في مروء الأمطار، ويتغذى في مروء الجفاف (Natural Resources, 1988, p. 384). أما حوض الصحراء النوبية (Ministry of Housing Water, 1985) فتغذية الأمطار، ومياه الصخور البركانية، (Natural Resources, 1988, p. 346) هذا وتساعد مياه الفيضانات على تغذية المياه الجوفية ويدخل تبادل مياه بين مجرى النيل والطبقات المجاورة موسى (6) كما
أن منطقة الدوام تستمد مياهها من مصادر مختلفة مثل التسرب من النيل الأزرق، ومن
النيل الأبيض وتسرب مياه الأمطار. Idris, H. and Soliman M., 1972, pp. 6-7 (222).

صور الحصول على المياه

يتم الحصول على المياه في السودان بصورة متعددة، منها الآبار، الخنافس، وغيرها من
الصور.

أولاً - الآبار:

حفرت الآبار في مناطق عديدة في السودان، في حوض البقارة حفر 120 شتر بعمق
Ministry of Housing Water, 1985, p. 8. وحفر في عام 1971 في تكوينات أم روابة 1000 شتر على عمق
10-15 متر (السكلدر، 1973، ص 179). وفي الصخور النوبية وصل عدد حفر
1000 شتر أيضاً، تزود السكان في الريف بقدار 10 مليون م³/ السنة، على عمق 6-5 متر
(المراجع السابق، ص 87).

ويمكن الحصول على المياه الجوفية من الأردية، وطبقاتها الرسوبية، كما في وادي أزووم
حيث يستخرج منه 100,000 م³/يومياً، وفي وادي كتوم يستخرج 200,000 م³/يومياً، ويستخرج
من خور المناش 50,000 م³/ يومياً، وفي اقليم الجزيرة يستخرج 360 ألف م³/يومياً
(المراجع السابق، ص 76).

وفي مناطق المخضبات نجد أنه يستخرج من منخفض بارا ما بين 50 - 240
م³/يومياً، وفي منخفض بابردة يستخرج 150 م³/يومياً فقط (المراجع السابق ص 81). ثم
Natural Resources, 1988, p. 341

ثانياً - الخنافس:

أسست هيئة توفير المياه والتنمية الرفيعة السودانية عام 1967، وبعد عشر
-206-
سنوات تقريباً قام ببناء 300 حفر، وهي عبارة عن خزانات مياه مسطحة صغيرة أعطت
9 مليون م³ وكانت كمية كافية للمشاكل وسريع أنها ملئت بالرواسب، وفي
عام 1956 أسس 200 حفر، وأرها سدود بكمية سنوية قدرها 11 مليون م³، وفي عام
حفرة 150 الحفر، وبني 10 سدود، وبلغت كفتها الكلية في التخزين 70 مليون م³.
السنة، وكلها تلبى احتياجات الإنسان والحيوان (4) انظر شكل (5).

ثالثاً: التزود من نهر النيل وروافده:

بضمت نهر النيل وروافده بتزويد السكان بالمياه للأغراض المختلفة بالمعدلات
الأكية:

أ - يبلغ معدل تزود النيل الأزرق بالمياه (5) و1.7 مليار م³، والتدفق اليومي يصل
إلى 11 مليون م³ في شهر أبريل، 545 مليون م³ يومياً في شهر أغسطس.

ب - يزود نهر الهرد كأحد روافد النيل الأزرق بمقدار 1.9 مليار م³ من يوليو حتى نوفمبر.

ج - بلغ معدل الإجمالي السنوي للمددر ثلاثة مليارات من شهر يونيو حتى ديسمبر.

د - يزود نهر سيفيت بمقدار 7 مليارات، 5 مليارات من روافد أخرى لنهر عطبرة وصل
تمعنها الإجمالي 12 ملياراً.

ه - يصل معدل تزود النيل الأبيض عند جبل الأولياء 120 مليار م³، معدل تدفق
يومي 454 مليون م³ في أبريل، 114 مليون م³ في نوفمبر.

و - يزود حوض بحر الغزال بمقدار 14 ملياراً تفوق في المستنقعات ولا يستفاد منها إلا بمقدار
نصف مليار فقط تصل للنيل الأبيض.

ـ معدل تزود بحر الجيل بمقدار 29 ملياراً عند منجلاً، يصل نصفها فقط عند ملكال.

ح - يزود السويفات بحوالي 13.7 مليار م³، يفوق في مستنقعات نهر البارون 4 مليارات,
وفي مستنقعات مشار 4 مليارات أخرى.
طر. يستقبل النيل الرئيسي من عظيرة والنيل الأزرق والنيل الأبيض الكمية السابقة.

هذا ويتم الحصول على المياه من نهر النيل عن طريق توزيعها في قنوات مثل ترعة المناقل أو قناة الجزيرة، وتركيب الآلات الميكانيكية لرفع المياه من النيل لري المساحات المجاورة له في السهل الفيضي على كلا جانبي المجرى المهر، سواء كان رافدا أو المجرى الرئيسي للحصول على المياه اللازمة للشرب والاستخدامات المنزلية وتزويد المدن والقرى بحاجتها من المياه بالإضافة إلى الاستخدامات الزراعية.

مجالات استخدام المياه وتنميتها:

تستخدم المياه في مختلف جوانب الحياة للأغراض المختلفة، أهمها:

1- مياه الشرب وتنميتها:

يطلب الراف ما سنوياً 275 مليون م م من المياه، منها 100 مليون م م للاستعمال البشري، 175 مليون م للاستهلاك الحيواني، وأن كان التزود بالمياه المتاحة يشير إلى أن الاحتياج يفوق ذلك، فالكمية المتاحة 83.4 مليون م م منها 40 مليون م م من الخزانات والسندود الصغيرة، 1.2 مليون م م من الآبار التقليدية، 21.6 مليون م م من الآبار العميق، وهذه الكمية المتاحة تشكل 33% فقط من الاحتراف الكلي للريف سنوياً.

(The Democratic Republic, 1977, p. 8).

وإذا كان البعض يقدر احتياجات الإنسان والحيوان في الريف السوسي كمية أقل وهي 240 مليون م م سنوياً، فإن مصادر الأمطار 3 شهور في رست السود، إذ يتطلب ضرورة توفير ملايين م م إلى جانب احتياجات الحيوانات البرية، والماء اللازم للأغراض الصناعية، لذا ساهمت المؤسسات المختلفة في عملية توفير مياه الريف، وحل مشكلة العطش بحوالي 6 مليارات م م سنوياً، ما يشكل 33% من الاحتراف (استكشاف 1972، ص 69)، ووصلت الآن إلى 75 مليون م م (10).

أما عن تزويد اللدن فهناك متنا متنوعة بعيدة عن مجري النيل وتستخدم على المياه السطحية من جهة والمجوفية من جهة أخرى. فمدينة أم روابي تتوزع من تصرف مياه خور أبو
حب، وتستعمل المياه المستخرجة من خور أربعات لمدينة بورسيران بالمياه العلية (استكر)، 1974، ص 74. وتستهلк مدينة كسلا والمراكز العمرانية المجاورة 1,5 مليون م 3، حيث يستخرج من خزان الجيش الجنوبي 72 مليون متر مكعب.

ومن تنمية مياه الشرب تعود أنها ضرورة لمواجهة العجز المائي خاصة في الاقليم الأوسط والشمالي بالسودان، ويتطلب هذا 1360 نقطة مياه سطحية، 240 بئر محفر حفراً بديلاً، وعدد 7986 بئر عميق لسد العجز المائي بالمناطق الريفية والمراكز العمرانية البعيدة عن النيل (Ibid., p. 8) انظر شكل (5) ولهذا فان البعض يقدر أن النزود بالمياه السطحية الريفية والطلب عليها في النطاق الصحرائي ونطاق السافانا في السودان يتطلب أيضاً عدداً من النقط المائية 116 مليون متر مكعب، حيث يمكن تقسيمها من 72 نقطة مائية، ينتج كل منها 3500 م 3 بكمانية عالية، هذا بالإضافة الى 974 بئر محفر بيدوي، بحيث ينتج كل بئر كمية من المياه قدرها 11 مليون م 3/سنتي (Ibid., p. 7).

استخدام المياه في الري وتسيميتها:

تنوع المصادر المائية المستخدمة في الري سواء من نهر النيل أو المياه الجوفية أو الأرديا الأخرى. فالموارد المائية النيلية بالسودان قد حددتها اتفاقية 1959، بكمية قدرها 75.04 مليارات م 3 عند سنار (أو 18.5 مليار م 3 عند أسوanse) وتوزع كالتالي كما في جدول (5).

ومن الجدول، أن معظم المساحات المزروعة تتركز حول نهر النيل بالسودان في خوض النيل الأزرق، ثم النيل الأبيض، وكان 25٪ من المياه تعمل على ري 1,8 مليون هكتار بالسودان موزعة بين المديريات المختلفة بالسودان، كما في جدول (6).

وتبلغ المساحات التي تروى ريا صناعيا 4 مليون فدان، مشروع الجزيرة يروى من نظام شبكة الري بالجزيرة ويروى من خزان سنار، مشروع خضم القرية التي تتراوح مساحته من مشروع الجزيرة يروى من طريق خزان خضم القرية، ومشروع السوقي موجه للقطن والقمح، وفي شمال غرب سنار يوجد مشروع قصب السكر، ومشروع رهد للقطن، ومنتجي للسكر في كل منها جنوبا.
جدول (٦)
كمية المياه للروافد النيلية والمساحة المرورية بالسودان

<table>
<thead>
<tr>
<th>النظام النهري</th>
<th>الكمية المتاحة بالليار (م³/سنة عام ١٩٧٧)</th>
<th>المساحة المرورية بالليار (م³)</th>
<th>إجمالي مساحات المشروعات الزراعية بالبككتار ١٩٨٧</th>
</tr>
</thead>
<tbody>
<tr>
<td>نظم النيل الأزرق</td>
<td>١١٥٧</td>
<td>١٢٤٧٥٣</td>
<td>١٢٥٩٨</td>
</tr>
<tr>
<td>نظم النيل الأبيض</td>
<td>٢١٩٥</td>
<td>٢١٩٥</td>
<td>٢١٩٥</td>
</tr>
<tr>
<td>نظم نهر عطبرة</td>
<td>١٥٨٣</td>
<td>١٥٨٣</td>
<td>١٥٨٣</td>
</tr>
<tr>
<td>نظم النيل الرئيسي</td>
<td>١١٦٢</td>
<td>١١٦٢</td>
<td>١١٦٢</td>
</tr>
<tr>
<td>خارج حوض النيل</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>المجموع</td>
<td>١٢٠٣</td>
<td>١٢٠٣</td>
<td>١٢٠٣</td>
</tr>
</tbody>
</table>

المصدر: The Democratic Republic Of The Sudan, 1977, P. 5 and from FAO, 1987, PP. 133-137

جدول (٧)
إمكانيات المساحة وموارد المياه المستقبلية بالسودان

<table>
<thead>
<tr>
<th>النظام النهري</th>
<th>الموارد المطلوبة سنوياً بالبكم</th>
<th>المساحة المفترضة ريها بالبككتار</th>
</tr>
</thead>
<tbody>
<tr>
<td>عطبرة (عطبرة العليا + ستين)</td>
<td>٢٢١١</td>
<td>٢٢١١</td>
</tr>
<tr>
<td>نيل الأزرق (كثانا) + رهد</td>
<td>٤٨</td>
<td>٤٨</td>
</tr>
<tr>
<td>نيل الأبيض</td>
<td>٢١</td>
<td>٢١</td>
</tr>
<tr>
<td>المجموع</td>
<td>٩١٧</td>
<td>٩١٧</td>
</tr>
</tbody>
</table>

المصدر: The Democratic Republic Of The Sudan, 1977, P. 5
أما عن تنمية مياه الري، فقد وضع بعض الخطط التي يمكن من الاستفادة بالموارد المختلفة بالسودان، وأخذت مجالات التنمية الزراعية صورة مشاريع منها.

(The Democratic Republic of the Sudan, 1977)

1- مشروع سكر كنام، ويتطلب 0.8 مليار مم.

2- تحليل خزان الروصبص لأغراض الري والطاقة.

3- خرطة جغرافيا: مساحة 8 مليون هكتار من مشروع جنوب في الفترة 198-79.

4- إنها قد توقف العمل فيها لأسباب داخلية بالسودان وحركة التمرد في الجنوب.

5- انشاء سد عطبرة الأعلى ونهر ستين لتوريد 1.6 مليار مم، وكان من المفروض أن ينتهي عام 1986.

ويلاحظ من الجدول السابق رقم (77) أن التنمية الزراعية تتطلب 9.29 مليار مم 3 من الموارد، وهذا يحتاج إلى تنمية وزيادة الموارد المائية السطحية في حوض النيل بالسودان.

وإذا كان البعض قد احتاج إلى احتياجات الري والطاقة من المياه بالسودان 15.8 مليار مم 3 على التوالي عام 1985 فقط، فقد أنها ستحصل إلى 41.2 مليار مم 3 عام 1990، وهي التي يمكن أن تصل عام 2000 إلى 71.3 مليار مم 3 للتخزين والطاقة المائية بحيث يصل إجمالي احتياجات السودان عام 2000 إلى 72.2 مليار مم 3.

هذه بالإضافة إلى 1.3 مليار هكتار يمكن انها من النيل الأزرق في خليط الطولية الامتداد والتي تتطلب 5 مليارات أخرى. ومن هنا رفع العجز المائي في السودان والمطلوب لمواجهة التنمية الزراعية (Permanent Joint Technical Comission, 1984, p.6).

وإذا هذا رُشمت خطة إضافية 2.4 مليار مم 3 من حفر قناة جنوب في الفترة 1987-79، ولم يكتمل المشروع، وخطط لانشاء سد عطبرة الأعلى ونهر ستين لحجز 1.6 مليار مم 3 ويستغرق 10 سنوات حتى 1989، وعملت الدراسات الهندسية لمشروع مشتر الذي

- 214 -
يوفر 4 مليارات من الامطار المكعبة حتى 1988.

وعمل السودان سدود ترابية تشبه تلك الموجودة في اوغندا بالمئات في اشورلي وفي Nza-

مادي للحصول على المياه في فصل الخريف جنوب السودان، وعمل سد في نزارا- ra

وعمل فريق بحث جونقلي سد تجريبي لأغراض الشرب على خور تيال ونجح لمدة 3 سنوات، وبنى مصلحة الأشغال العامة في السودان سد مازونادي بارتفاع 5 امتار على

ومن تنمية المياه الجوفية يمكن استخدامها في ري العديد من المشروعات كالآتي:

1. زيادة المساحة الرطبة في كسلا، بارا، البان، جديد، دار حامد.

2. يوجد في منطقة جبل مرة 250 مليون م³ تمكن من ري 4040 هكتار.

3. تنمية وادي الخوري، وادي الكعب في المديرية الشمالية، حيث يوجد 67 ألف هكتار.

4. تنمية منطقة صبح النعام حيث يوجد 71 ألف هكتار صالحة للزراعة.

5. تنمية مشروع كروات في عطرة الأورومي ومساحته 41 ألف هكتار.

6. يمكن تنمية مساحات أخرى باستخدام المياه الجوفية في مناطق غير محددة في شمال دارفور، وادي هوار، شرق النيل الأزرق، وفي وادي المقدم... (The Democratic, 1977, p. 8, انظر شكل (6)).

المشروعات النيلية المقترحة للتنمية:

1. مشروع جونقلي:

برزت فكرة مياه قناة جونقلي منذ أكتر من 90 سنة (1898) وبدأت أعمال استكشاف في عام 1949. وفي 1936 وضع الحلول الأولى وقدم أول تقرير عام 1947، ومذكرة عام 1948 لتعديل خط مسار الري، وتقدمت الهيئة الفنية المشتركة في عام 1974 بكتاب القراءة الثالثة لمشروع ابراد النيل لتقليل الفائض في المستنقعات (نفق ابحاث جونقلي، 1983، ص ص 121، 117) ثم وضعت الهيئة المشروعات والكميات الناتجة عنها كالآتي:
المشروع
كمية الزيادة الناتجة وتصل
عند أسوان بالمليلار م ³

3.8
جوجل (1)
3.6
جوجل (2)
5.7
بحر الغزال
3.2
مستشعات مشار

الإجمالي
16.1
م ³

1. مشروع جوجل (1) يتضمن قناة جوجل بكفاعة 10 ملايين م³/يوماً، والتي تزيد حصة السوادن في النهاية لتصبح إلى 20 مليار م³ سنويًا، وأن كان البعض يزيد من الكمية التي ستوفرها القناة بحيث تصل 50 مليار م³ (6، 1977، p.6).

ولكنه بعد خصم الفاقد ستنصل الكمية 3.8 مليار م³ عند أسوان.

2. أما مشروع جوجل (1) فيطلق على المرحلة الثانية لتنمية المياه في أعلى النيل في منطقة البحيرات الاستوائية ويأتي تاليًا لمشروع جوجل (1)، وذلك بالتحكم في المسيلات والأودية والأنهار والروافد الأخرى لبحر الجبل، وهو يوفر 37 مليار م³ في السنة ولذلك عن طريق بناء مجموعة سدود مثل سد كيوجا، سد موتير على نيل البرت، وغيرهما من السدود التي درست مواسفاتها كل حسب درجة التنمية.

3. مشروع بحر الغزال: وهو عبارة عن عملية صيانة المياه المفقودة من نظام بحر الغزال، وذلك من طريق عمل سدود تخزين المياه وقنوات وجامعة مقسمة بصورة تشبه نظام القنوات الخضراء، حيث يفقد في هذه المستشغبات 14 مليار م³ تستطيع فكرة بناء الخزانات لتخزين المياه وقناة التقسيم أن توفر 7 مليار م³، أي نصف الكمية المفقودة وذلك عبر مجرى رئيسي إلى جانب درافد أخرى ثانوية (The Democratic، 1977، p.6).

- 210 -
يصل من الـ7 مليارات هذه 7 مليارات م 3 عند أسوان، وهذه الكميات المتاحة للتقاسم بين مصر والسودان.

ويصل المتوسط الشهري 98 مليون متر مكعب، ويتغير التصرف من شهر لآخر، ويلياما معدل التغير 128 مليون م 3، وهو تغير كبير، واداني التصرفات في ديسمبر واعلاها في أغسطس.

وقد أشترت الدراسات المصرية إلى ضرورة إنشاء قناة كفاءتها 1.3 مليون متر مكعب يوميا عند رأسها، بدأتها على نهر بارو بجوار مقر ماعل الشروع مع خور جركار، وترمي مستنقعات مشار وتصب عند خور أدرن جنوب ملوت شكل (7) على النيل الأبيض، ويمكن توفير 4 مليارات م 3 للساعة منها عند ملكا، يصل منها عند أسوان 3.2 مليار م 3 (Ibid., p. 16).

موارد المياه والطاقة

أقيم العديد من السدود والمحطات على مياه النيل في السودان، وأمكن توليد الطاقة الكهربائية منها كم حسب كفاءته، وأهم مناطق توليد الطاقة الكهربائية:

۱. النيل الأزرق، حيث أقيم خزان برازوس عام 1966، وسعته في تصريف المياه 3 مليارات م 3، ويمكن 230 ألف كيلواط. أما سد سنار الذي أقيم على نفس النهر عام 1977 فتعله سعة مiliarا وحدها ويعطي 15 ألف كيلو واط.

۲. النيل الأبيض: وأقيم عليه خزان جبل الأولياء عام 1937، وسعه 3 مليار م 3، ويعطي كمية كبيرة من الطاقة تبلغ 30 مليون راط (Ibrahim, 1981, p. 105)

شَكَّلٌ (8)

المصدر: من عمل الباحث

المصدر: من عمل الباحث

شَكَّلٌ (8)
وعن مستقبل الطاقة المائية في السودان نجد أن هناك امكانيات كبيرة للترليد منها:

- النطاق بين نهر النيل في الجهة الجنوبية وريبا وأمكانيات الطاقة المائية بهذا النطاق 1000 مليون واط، وفي السنوات العادية 500 مليون واط، وشلالات فولا 97 مليون واط، وشلالات ماكيكو 22 مليون واط، وشلالات بيدن 22 مليون واط أيضاً. (Apreaminary Report, 1985, p. 239)

في السودان 5 جنوداً مناسبة لتوليد الطاقة الكهربائية بكمية تبلغ 700 مليون واط ومنها إنشاء مشروع الطاقة في خانق سبلوكا على النيل الرئيسي للتزويد بالطاقة بقدر 100 مليون واط، ومن الجندل الخامس 25 مليون واط، ومن الجندل الثالث 500 مليون واط (Ibrahim, 1981, p. 105).

جرب السودان يمكن توليد الطاقة من شلالات آبا أما على نهر عطرة فقد خطط لإنشاء سد روميلا على نهر عطرة يمكن أن يعطي 30 مليون واط (Ibrahim, 1981, P. 105) انظر شكل (8).

وتصنف عامة بلاحظ أن إجمالي كفاءات المواقع المختلفة المقترحة لتنمية الطاقة المائية في السودان تبلغ 1600 مليون واط، وبذلك يمكن أن تتضاعف الطاقة الكهربائية المولدة من نهر النيل ورواشه في السودان، ويعتمد ذلك على التدفق الموضعي، ودورات فتح الخزانات (The Democratic R., 1977, P.9)

الملاحة النهارية ومشكلات تعميتها:

تعد السودان من أهم الدول العربية التي تميز بتلك الشبكة المائية التي تتفرع في كل أرجائها وتتأخذ محاوراً متعددة، وقد أمكن استثمار هذا المورد كشريان للملاحة في

** تعني قدرة الطاقة بالخمان. حيث بحل الرقم إلي نسبة ثانية إلى كيلورات.
السودان

المناطق المحيطية الكبرى في السودان

المصدر: من هيئة الباحث

شكل (9)
السودان، حيث أن هناك بعض المناطق لديها درجة كبيرة من الصلاحية لهذا الاستخدام، وآخرى تظهر بها بعض المشكلات التي تؤثر في الراحة في فترة معينة من السنة، وثالثة تظهر بها عوائق تمنع ممارسة هذا النشاط الهيروي.

خدمات الراحة المنظمة:

توجد مناطق في مجرى نهر النيل وروانده في السودان تساعد على ظروفها المائية على وجود خدمات الراحة المنظمة ويظهر ذلك في المناطق الآتية:
1. النيل الرئيسي من كرمة إلى كرمة لمسافة 280 كم.
2. النيل الأبيض من بحيرة نو حتى الخروج لمسافة 86 كم.
3. منطقة بحر الجيل من بحيرة نو حتى جوبا لمسافة 9 كم شكل (19).

خدمات الراحة غير المنظمة:
1. وهي موسمية من مصب النيل (فم نهر بالابور) لمسافة 155 كم.
2. بحر الفزال من بحيرة نو حتى وادي لمسافة 60 كم.
3. من سوقى حتى الرصاص لمسافة 44 كم.
4. شبكات الطرق غير المنظمة وصلعب للراحة الموسيمة.

هذا وبلغ اجمالي طول الشبكة المائية للراحة 634 كم وكفاءتها السنوية في النقل خمس ملايين طن، تخدمها 11 سفينة، 20 كويي، بينما تقدر الكفاءة المطلوبة بـ (The Democratic R. of the Sudan, 1977, p. 10) علاوة على الصرف الانتاجي الذي تنقله السن من الرائة إلى أخرى في الجهوي المقابلة أمام المدن الواقعة على نهر النيل كما هو الحال في كرمة والغابة ودلتا وجزيرة مقرنص ومن منطقة السرير بمدينة الخرطوم وغيرها كثير، والتي رآها الباحث جمعها.

العوائق الهيدرولوجية للراحة:

تراجم الراحة في السودان عدة عوائق بعضها يتعلق بطريقة الخريج والآخر

تتعلق بالجري نفسه، منها:
1. الخصائص والمسارع والشلالات والجداول في المجري الرئيسي لبحر الجبل جنوب جنوب جوبا. وهي المشكلة التي يمكن أن تصل على المدى البعيد.

2. انخفاض التصرف في فصل الجفاف في النيل الرئيسي.

3. قلة العمق في بحر الجبل جنوب شامبي، وجود شواطئ رملية غائرة.

4. صعوبة الملاحة شمالاً مスタッフ نتيجة الضحالة في فصل الجفاف، وجود الصخور في القاع وغيرها من العوائق.

5. وجود النباتات الصائدة في بحر الجبل، وفي النيل الأبيض، خاصة نبات ورد النيل.

Ibid., p. (10).

وفي محاولة تنمية النشاط الملاحي لنهر النيل في السودان يجب أن يتم ضبط النيل في أعلاه (وذلك بعد تنفيذ مشروع جوجيلي 2)، يؤدي ذلك إلى انسياب 17 مليار م م من المياه في الفترة الشحيحة من الكمية البالغة 77 مليار م في السنة، وفي موسم ارتفاع منسوب النهر يناسب 10 مليارات، وهو منسوب كافٍ للملاحة وللتنقل للحشائش (فريق إبحاث جوجيلي، 1983، ص 40).

ومن المتوقع بعد إنشاء قناة جوجيلي أن تصبح الملاحة ممكنة على بحر الجبل حتى ارجوك جنوبًا، وتختصر المسافة بين جوبا ومملكة شمالًا بمقدار 300 كم (المرجع السابق، ص 86، ص 96).

ويتضمن من شكل (9) أن هناك إمكانية لتنمية الملاحة النهرية في منطقة بحر الجبل بالسودان عن طريق مجموعة من الفتحات يتم عملها بين بحر الجبل وقناة جوجيلي، وقد اخترعت مراقبها ويبلغ عددها أربعة مداخل.

المياه العذبة والصيد:

توجد الأسماك في المجري الرئيسي لنهر النيل وفي الخيران المتصلة به في السودان، وبالبحيرات والمستنقعات أيضاً، ويؤثر ارتفاع وانخفاض مستوى المياه على وفرة الأسماك.
المتاحة للصيد. فالمنطقة بين شامي والكنيسة والزراع جنوب السودان بها إمكانات كبيرة للثروة السمكية غير المستغلة لسوء ال联系方式 والتغريق، أما في جنوب الكنيسة توجد معسكرات قبائل الدنكا الذين يعتمدون على الأسماك ويحرف قبائل الشلك حرفية الصيد إلى جانب الزراعة (المرجع السابق، ص 113).

ويتعد الصيد الأسماك من الأنشطة المحلية، ولها أهمية كبيرة، وهو غذاء ثانوي جميع أهالي المنطقة الجنوبية، والحرف هنا موسمية و يتم الصيد في فصل الجفاف من البحيرات الطبيعية التي تنخفض في المستنقعات المحددة بحرا النيل.

أما في شمال السودان فنجد بحيرة ناصر التي قدّرت المساحة المتاحة للصيد التجاري بها في السودان بنحو مليون هكتار، وإذا قدر بأن الكمية هي 20 كجم/الهكتار فانه يتوقع أن يصبح لدى السودان 4030 طن سنويًا، والتي يمكن أن تزيد الى 5000 طن سنويا من هذه البحيرة. هذا وإذا قدرنا بأن مساحة مياء نهر النيل نفسها وبحيراته ومسطحاته المائية المرتبطة به تبلغ 5 مليون هكتار، فإن مخزون نهر النيل وروافده من الأسماك يصبح 1000 طن سنويًا (Ibrahim, 1981, p. 106).
النتائج

أولاً - إن الاحتكام الكلي لصرف من المياه في زيادة مستمرة، فالأحتمال في عام المائي في مصر، فإن الاستخدام المائي يصبح كالآتي:

السنة

الاستخدام

المليار م

1996 29.4
1997 7.6
1998 7.6
1999 15.1
2000 21.1
2001 11.2
2002 58.2
2003 68.9

وذلك يتضح ذلك العجز المائي خاصة وإن هذه الاحتياجات قد بنيت على أساس تقييم الرحلة الأولى من مشروع تناقش جوهري في السودان ومخطط مستقبلات مشار والذين

كانت سيرتاع حصة مصر إلى 59 مليار م/السنة.

ثانياً - بناء على الخطط الفائقة التي وضعت في السودان لتنمية الزراعية حتى

فان في نهاية هذا القرن، وتعتمد في مبادئه على الزي السطحي، فإن هذا سوف

احتياج السودان من المياه في الوقت الذي يوجد عجز مائي نسيب في المياه في العمليات الزراعية في مصر والسعودية بصفة عامة.

- 272 -
ثالثاً - كم ميزنة المياه في السودان لم تشتهر كلياً بعد، وبها مساحات زراعية كبيرة، فكان عمل مشروعات مشتركة بين الدولتين في إطار تسهيل تنفيذها، وربما الموارد الزراعية لأطول فترة مكثفة. تلك الفترة التي يتم خلالها تنفيذ مشروعات اقتصادية النيل بالسودان لزيادة الموارد المالية لنهر النيل والتي تُستفيد منها مصر والسودان.

رابعاً - كانت السياسة السودانية تهدف لتنفيذ الجوانب الزراعية بصورة عامة اعتماداً على مياه النيل في المقام الأول حيث أنها أي السبل المالية لتنمية حاجات الأراضي الزراعية من المياه فإنها قد وضعت في خطة الاستقلالية التي شرع في تنفيذ بعضها في أوائل الثمانينات من هذا القرن، والطريقة في العقود التالية لها، وتلك تعلية خزان الروصصى في اراضي جديدة أخرى في حوض النيل الأزرق، وتعلية سد سنار أيضاً وثورة من السودان الأخرى، فإن هذا سوف يؤثر على كميات المياه المتدفقة، وهذا يجب أن يتم تعلية هذه الجوانب إذا بدأ العمل في تعليتها، في إطار دولي بين مصر والسودان، بحيث لا يؤثر هذا بصورة أو أخرى على كميات المياه المتدفقة من حوض النيل، في أي شهر من شهور السنة أو في الكلية المتبقي عليها.

خامساً - و هناك اتجاهات أخرى لانتهاء مجموعة من السدود لزيادة التحكم في مياه النيل، وذلك عدة إتجاهات رئيسيين: الزراعة من جهة، وتوليد الطاقة الكهربائية من جهة أخرى، منها انشاء سد في أعالي نهر عطبرة لجزء كميات من المياه قدرها 11 مليار م³، ويتتسيء العمل في أوائل الثمانينات، وأخير على نهر سيرت أحد الروافد، نهر عطبرة حيث يصل إجمالي المياه المحتجزة لنهر عطبرة بالسودان 12.19 مليار م³، وان المتوسط للنهر عطبرة خلال القرن الماضي يبلغ 12.26 مليار م³، كما في جدول (32) إذا كان هذا لا يؤثر على مجموع مالم يصل إلى الأراضي المصرية من مياه نهر عطبرة، فإنه يجب أن يؤخذ في الاعتبار نظام تشغيل مثل هذا السد حتى لا يؤثر على مراعاة رصوبة المياه إلى النهر العالي في الأوقات المطافية، ونتج عن السودان الآن لتفعيل واستكمال مشروع التحصين على النيل الرئيسي في القطاع الشمال الشرقي بغرض توليد الطاقة، وان هذا لا يؤثر على حصة مسح من المياه.

سادساً - أما فكرة انشاء سد على نهر البندوس بعد جمبيلاً وذلك في حوض نهر السويس، فإن موقفه سيكون بالأراضي الأثيوبية، أو الأراضي السودانية، فيجب اجراء
مجموعة من الدراسات الفنية لأهمية هذا السد في حالة محاولة الابتعاد من مشروع مستنعتق مشار في جنوب شرق السودان.

سابعًا: هناك مشروعات لتنمية الموارد المائية يمكن أن يكون لها دور حيوي في تغيير مسارات التنمية الزراعية لكل من مصر والسودان، وتعزز أهمية هذه المشروعات في الأرزة الحالية خاصة بعد توقف مشروع قناة جوهرلي، وخصوصا تنفيذ مشروع جوهرلي 2 الذي يمثل المرحلة الثنائية والتالية أيضا مشروع قناة جوهرلي (جوهرلي 1) ومنها مشروع مستنعتق مشار ومشروع بحر الغزال، المشروع الأول وهو مشروع مشار يمكن أن يوفر 2.5 مليار م³. أما المشروع الثاني في بحر الغزال فيمكن أن يضيف 0.5 مليار م³ وهذه الكميات في الكميات الفعلية التي ستصل عند اسوان بعد تنفيذ المشروعين والقابلة للتكاثف بين مصر والسودان، لذا فإن حصة مصر من هذين المشروعين يمكن أن تزيد بمقدار 4.5 مليار م³ في السنة، وإذا أضافنا اليها نصيب مصر النفيزي طبقًا لاتفاقيته 1959 فان حصة مصر الإجمالية من تنمية الموارد المائية بالسعودية سوف تصل إلى حوالي 10 مليار م³، ولذا يجب أن يكون المشروع المائي طبقًا للخطة المصرية لتنمية الموارد الزراعية والهيدرولوجية مرتين، وذلك يمكن تدبيجها من مصادر أخرى سواء عن طريق المياه الجوفية أو إعادة استخدام مياه الصرف الزراعي بعد معالجتها أو استخدام تقنيات ووسائل الري بصورة اقتصادية لتقليد النافذ من المياه في الاستخدام الزراعي مثل الري بالرش أو الري بالتنقية خاصة في المناطق التي سيتهم التوسع فيها الزراعيا وتكتسب مثل هذه الكمية الزائدة من المياه، وعامة فإن الكميات التي تضيفها الخزان الجوفي في الدائرة ونسبة الثلث الآن 4.5 مليار م³/ السنة وال معدل السنوي المالي من إعادة استخدام مياه الصرف الزراعية 6.6 مليار م³/ السنة. إجمالا 7.2 مليار م³ / السنة (المؤسسة العامة للمياه والصرف الصحي في القاهرة، 1990، ص 2).

ثالثًا: أن كميات المياه الجوفي بالسعودية زائدة عن الحد، ويمكن استخدامها في جوانب التنمية الزراعية بدرجة أكثر أمانا، على أن تتنقل الكميات المستخرجة من المياه في إجمالي المشروع الزراعي مع كمية التغذية الحيوانية للمزارع الجوفي الذي تستمر مياهه بحيث تسويها أو تصميم كمية السحب أقل نسبة من كمية التغذية لضمان التدفق المستمر.
واسعًا. تضم المديريات الشمالية بالسودان إراضي زراعية صالحة للزراعة يمكن عمل مشروعات مشتركة هناك بين مصر والسودان تستخدم فيها مصدر المياه النيلية والجوفية دون تأثر، سواء في حوضي السليم وكربة، أو في وادي الجاعب وغيرها من المناطق الأخرى.
قائمة المراجع

2. أسكندر (ولسن)، المباني الأرضية في السودان، مستخرجة من : المنظمة العربية للتربيـة والثقافة والعلوم، مصادر المباني الأرضية في البلاد العربية، سلسلة رقم 2، 1973.

3. الهيئة الفنية الدائمة المشتركة لمياه النيل، لوحة رقم 18/2، لبيان المواقع المناسبة لوصلات ملاحية بين بحر النيل وقرى جنوب جنوب، القاهرة، مقياس 1/100000.

5. شاكر (أمال اسماعيل)، "إبادة نهر النيل بين الزراعة والتنمية في الفترة الحديثة"، المجلة الجغرافية العربية، العدد الحادي والعشرين، 1989.

7. فريق أبحاث جنوب جنوب، مشروع جنوب جنوب القديم والحديث، ترجمة هنري رياض وآخرون، الخرطوم، أبريل 1983.

8. الإدارة العامة للمرارين الطبيعية، برنامج مكافحة الزحف الصحراوي وإصلاح أثره (ديكارب) الخرطوم، الجزء الأول.

9. مصلحة الري المصري بالسودان، التقرير النهائي لبعثة مساحة بحر النيل، مجموعة متقابل.

10. التقرير العام عن بعثة مباحث النيل الأبيض عام 1955، الخرطوم، تقرير غير منشر.

11. هرست، ويلسون، ووسموكية (بيوفس): المحافظة على مياه النيل في

18. Idris (Hussein) and Soliman (Mostafa), Ground-Water Utilization in ED Dueim Area, in Sudan, Cairo, Egypt, 1972.

22. Sudan Survey Department, Khartoum, Sheet 1,2,3, 1983, Scale 1:2000000.